Acta Crystallographica Section C
Crystal Structure

N-(2-Amino-1,6-dihydro-5-nitroso-6-oxopyrimidin-4-yl)-t-isoleucine-water (4/1): interplay of molecular and supramolecular structures

John N. Low, ${ }^{\text {a }} \dagger$ Debbie Cannon, ${ }^{\text {b }}$ Antonio Quesada, ${ }^{\text {b }} \ddagger$ Antonio Marchal, ${ }^{\text {c }}$ Manuel Melguizo, ${ }^{\text {c }}$ Manuel Nogueras, ${ }^{\text {c }}$ Adolfo Sánchez ${ }^{\mathrm{c}}$ and Christopher Glidewell ${ }^{\mathrm{d} *}$

${ }^{\text {a }}$ Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, ${ }^{\mathbf{b}}$ Department of Electronic Engineering and Physics, University of Dundee, Nethergate, Dundee DD1 4HN, Scotland, ${ }^{\text {c }}$ Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and ${ }^{\text {d}}$ School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland Correspondence e-mail: cg@st-andrews.ac.uk

Received 24 January 2001
Accepted 5 February 2001
In the title compound, $2 \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, there are two independent molecules of the pyrimidinylisoleucine in general positions and a water molecule lying on a twofold rotation axis. The bond lengths within the organic moieties demonstrate significant polarization of the electronic structure. Each of the organic molecules participates in 12 intermolecular hydrogen bonds, of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ types, while the water molecule acts as a double donor and as a double acceptor of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The organic components are linked by the hydrogen bonds into a single threedimensional framework, reinforced by the water molecules.

Comment

The molecular and supramolecular structures of the nitrosopyrimidine derivatives of amino acids, (I), are characterized by several unexpected features (Low et al., 2000). The bond lengths are consistent with a marked polarization of the electronic charge, and there are very short intermolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the carboxyl group as donor and the nitrosyl O atom as acceptor, with $\mathrm{O} \cdots \mathrm{O}$ distances around $2.50 \AA$; where the amidic O acts as a hydrogen-bond acceptor, it does so only weakly. We have now investigated an analogous hydrated derivative (II), formed by l-isoleucine [$(2 S, 3 S)$-2-amino-3-methylpentanoic acid], in which the amino acid side chain is ortho to the C-nitroso group, rather than para to it as in (I); the molecular and supramolecular structures of (II) exhibit some significant differences compared with those of (I).

[^0]Compound (II) crystallizes in space group $C 2$ with two molecules in the asymmetric unit; in addition, there is a water molecule lying on a twofold rotation axis, so that the overall composition is $4 \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$. The conformation of the acidic side chains (Table 1 and Fig. 1) and the hydrogenbonding characteristics (Table 2) of the two independent organic molecules rule out the possibility of any additional symmetry; in particular, only molecule 1 (Fig. 1) forms hydrogen bonds with the water molecule.

(a) $\mathrm{R}=\mathrm{CH}_{2} \mathrm{COOH}$
(b) $R=\mathrm{CH}(\mathrm{COOH}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{3}$
(c) $R=\mathrm{CH}(\mathrm{COOH}) \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
(d) $R=\mathrm{CH}(\mathrm{COOH}) \mathrm{CH}_{2} \mathrm{OH}$
(e) $R=\mathrm{CH}(\mathrm{COOH}) \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$

(II a)

(IIb)

The intramolecular distances for the two molecules are extremely similar, apart from $\mathrm{C} n 4-\mathrm{C} n 5$ and $\mathrm{C} n 5-\mathrm{C} n 6$ ($n=1$, 2) which are both significantly longer in molecule 1 ; however, in each of the two individual molecules, these two distances are virtually identical. There are a number of metrical features which indicate the inadequacy of representation (II) for the electronic structure. Firstly, in the sequence of $\mathrm{C}-\mathrm{N}$ bonds $\mathrm{N} n 2-\mathrm{C} n 2-\mathrm{N} n 3-\mathrm{C} n 4-\mathrm{N} n 4(n=1,2)$ it is not possible from the observed distances to assign $\mathrm{C} n 2-\mathrm{N} n 3$ as a double bond and the remainder as single bonds; indeed, in these sequences the shortest bonds are the exocyclic bonds $\mathrm{N} n 2-\mathrm{C} n 2$. Secondly, the $\mathrm{C} n 4-\mathrm{C} n 5$ and $\mathrm{C} n 5-\mathrm{C} n 6$ bonds cannot plausibly be assigned as double and single bonds, respectively; the Cn4-Cn5 distances are, in fact, similar to those for single bonds between two three-connected C atoms (Allen et al., 1987). Finally, the differences between the $\mathrm{C}-\mathrm{N}$ and $\mathrm{N}-\mathrm{O}$ distances in the C-nitroso fragment are small; in simple neutral compounds where there is no possibility of significant electronic delocalization, these distances normally differ by at least 0.20 Å (Talberg, 1977; Schlemper et al., 1986) and the NO distance rarely exceeds $1.25 \AA$ (Davis et al., 1965; Bauer \& Andreassen, 1972; Talberg, 1977; Schlemper et al., 1986). These observations point to the importance of the contributions ($\mathrm{II} a$) and (II b) to the electronic structure. By contrast, in compounds of type (I) (Low et al., 2000), forms analogous to (II a) are important contributors to the electronic structures, whereas forms analogous to (IIb) are not. The importance of $(\mathrm{II} b)$ in the title compound is demonstrated by the hydrogen-
bonding behaviour, where the amidic O 16 and O 26 atoms (Fig. 1) both act as triple acceptors (Table 2).

In each of the two independent molecules of (II), there is an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. In addition, each molecule acts as a sixfold donor of intermolecular hydrogen bonds and as a sixfold acceptor. Finally, the water molecule acts as a twofold donor and as a twofold acceptor. The resulting hydrogen-bonded supramolecular structure, a threedimensional framework, is thus of considerable complexity; however, adoption of the substructure approach (Gregson et al., 2000) leads to a rather straightforward description in terms of a single-chain motif and the connections between such chains.

Within the asymmetric unit, atom N 21 acts as hydrogenbond donor to both N 15 and O15 in a nearly planar threecentre hydrogen bond; likewise, N22 acts as donor, via $\mathrm{H} 22 B$, to both N15 and O16 in a similar but strictly planar system. In an entirely similar way, N 11 at (x, y, z) acts as donor to N 25 and O 25 at $\left(\frac{1}{2}+x, \frac{1}{2}+y, 1+z\right)$, and N 12 at (x, y, z) acts as donor, via $\mathrm{H} 12 B$, to N 25 and O 26 , also at $\left(\frac{1}{2}+x, \frac{1}{2}+y, 1+z\right)$. Hence these four distinct three-centre hydrogen bonds generate, by translation, a complex chain of rings running parallel to the [112] direction (Fig. 2). There are four chains of this type running through each unit cell: two, related to one another by the action of the C-centring operation, are parallel to [112], and a second pair, related to the first pair by the action of the twofold rotation axis, run parallel to [11 2].

Each two-molecule aggregate within the chain forms six further hydrogen bonds exterior to its own chain, and these

(a)

(b)

Figure 1
The two independent pyrimidine molecules in (II) showing the atomlabelling scheme of (a) molecule 1 and (b) molecule 2. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
Part of the crystal structure of (II) showing the formation of one of the [112] chains. Atoms marked with an asterisk $\left({ }^{*}\right)$ or hash (\#) are at the symmetry positions $\left(\frac{1}{2}+x, \frac{1}{2}+y, 1+z\right)$ and $\left(-\frac{1}{2}+x,-\frac{1}{2}+y,-1+z\right)$, respectively. H atoms bonded to C atoms and some leucyl alkyl C atoms have been omitted for the sake of clarity.
serve to link all of the chains into a single framework, although the behaviour of the two independent organic molecules is quite different. Carboxylic O 22 at (x, y, z) acts as hydrogenbond donor to amidic O 26 at $\left(\frac{1}{2}-x, \frac{1}{2}+y,-z\right)$, while O 22 at $\left(\frac{1}{2}-x, \frac{1}{2}+y,-z\right)$ in turn acts as donor to O 26 at $(x, 1+y, z)$, so producing a spiral $C(9)$ chain parallel to the [010] direction, built entirely from type 2 molecules and generated by the 2_{1} screw axis along ($\frac{1}{4}, y, 0$) (Fig. 3). A second spiral motif parallel to [010] involves molecules of types 1 and 2 and is generated by the 2_{1} screw axis along $\left(\frac{1}{4}, y, \frac{1}{2}\right)$. Amino N12 acts as donor, via $\mathrm{H} 12 A$, to O26 at $\left(\frac{1}{2}-x, \frac{1}{2}+y, 1-z\right)$ and N 12 at $\left(\frac{1}{2}-x, \frac{1}{2}+y, 1\right.$ $-z)$ acts in turn as donor to O 26 at $(x, 1+y, z)$, generating a $C_{2}^{2}(11)$ motif (Fig. 4). These two [010] motifs serve not only to link parallel [112] chains into sheets, and likewise the [1 $\overline{1} 2$] chains, but are sufficient to link the [112] and [1512] chains into a continuous framework, which can thus be generated without the intervention of the water molecules.

Figure 3
Part of the crystal structure of (II) showing the formation of the $C(9)$ spiral motif linking the [112] and [1六2] chains. Atoms marked with an asterisk (*) or hash (\#) are at the symmetry positions $\left(\frac{1}{2}-x, \frac{1}{2}+y,-z\right)$ and $(x, 1+y, z)$, respectively. H atoms bonded to C atoms have been omitted for the sake of clarity.

Figure 4
Part of the crystal structure of (II) showing the formation of the $C_{2}^{2}(11)$ spiral motif linking the [112] and [112] chains. Atoms marked with a hash (\#) or dollar sign (\$) are at the symmetry positions $(x, 1+y, z)$ and $\left(\frac{1}{2}-x\right.$, $\frac{1}{2}+y, 1-z$), respectively. H atoms bonded to C atoms and some leucyl alkyl C atoms have been omitted for the sake of clarity.

In the event, all four chains are linked by the water molecules: water O 1 at (x, y, z) acts as donor to amidic O 16 atoms in the molecules at (x, y, z) and $(1-x, y, 1-z)$, and as acceptor from carboxylic O12 atoms at $\left(\frac{1}{2}+x, \frac{1}{2}+y, z\right)$ and $\left(\frac{1}{2}-x, \frac{1}{2}+y, 1-z\right)($ Fig. 5). Each of these type 1 molecules lies in a different chain; each water molecule acts as donor to type 1 molecules in one [112] and in one [11 $\overline{2}$] chain, and each water similarly acts as acceptor from type 1 molecules in one [112] and one [11 2] chain.

Of the three $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds present (Table 2), the two involving the water molecule have much shorter $\mathrm{O} \cdots \mathrm{O}$ distances than the one not involving water. Four of the intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds form part of threecentre systems; although the ranges of the $\mathrm{N} \cdots \mathrm{O}$ distances for the two types of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (two-centre and

Figure 5
Part of the crystal structure of (II) showing the hydrogen bonds formed by the water molecule. Atoms marked with an asterisk (*), hash (\#) or dollar sign (\$) are at the symmetry positions $(1-x, y, 1-z),\left(\frac{1}{2}+x, \frac{1}{2}+y\right.$, z) and ($\frac{1}{2}-x, \frac{1}{2}+y, 1-z$), respectively. H atoms bonded to C atoms and some leucyl alkyl atoms have been omitted for the sake of clarity.
three-centre) overlap, the average value in the three-centre bonds, 3.088 (3) \AA, is somewhat larger than that in the twocentre bonds, 2.908 (3) \AA. The only $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds present are all part of three-centre systems; the average value of the $\mathrm{N} \cdots \mathrm{N}$ distance in these systems, 3.081 (4) \AA, is very similar to the corresponding $\mathrm{N} \cdots \mathrm{O}$ average. In the intermolecular two-centre hydrogen bonds, the $D-\mathrm{H} \cdots A$ angles range from 152 to 175°, with a mean value of 166° (Table 2). While none of the $D \cdots A$ distances is particularly short, the co-operative effect of the multiplicity of hydrogen bonds, particularly within the [112] and [11 2] chains, produces a coherent and stable supramolecular arrangement. However, none of the hydrogen bonds in (II) approaches the very short $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in the series (I). All potential hydrogen-bond donors participate in the supramolecular structure, with the exception of $\mathrm{N} 14-\mathrm{H} 14$ and $\mathrm{N} 24-\mathrm{H} 24$, which both form intramolecular hydrogen bonds. It is notable that none of the O atoms in the carboxylic acid groups acts as a hydrogen-bond acceptor. It may be presumed that atoms N13 and N23 do not act as hydrogen-bond acceptors for steric reasons.

Experimental

To a suspension of 2-amino-4,6-dimethoxy-5-nitrosopyrimidine ($92 \mathrm{mg}, 0.5 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{ml}$) was added a solution of L -isoleucine ($79 \mathrm{mg}, 0.6 \mathrm{mmol}$) in aqueous $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $(0.6 \mathrm{ml})$. Water $(4.4 \mathrm{ml})$ was added and the final mixture was stirred for 8 h at room temperature. The mixture was evaporated to dryness and the residue was suspended in 5 ml of water and acidified with concentrated HCl to $\mathrm{pH} 2-3$. Slow evaporation at 277 K gave single crystals of (II) suitable for X-ray diffraction ($97 \mathrm{mg}, 72 \%$; m.p. $463 \mathrm{~K})$. IR (KBr), $\nu\left(\mathrm{cm}^{-1}\right): 3369-3181(\mathrm{NH} / \mathrm{OH}), 2971(\mathrm{C}-\mathrm{H}), 1736$ $(\mathrm{C}=\mathrm{O}), 1757,1708(\mathrm{C}=\mathrm{O}), 1656\left(d, \mathrm{NH}_{2}\right), 1577,1539(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}$, $\mathrm{N}=\mathrm{O}), 1309(\mathrm{C}-\mathrm{N}), 1202(\mathrm{C}-\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta$ (p.p.m., TMS) 12.87 ($d, 8.44 \mathrm{~Hz}, \mathrm{NH}$), 10.94 ($b r, s, \mathrm{NH}), 8.29\left(b r, s, 1 \mathrm{H}, \mathrm{NH}_{2}\right)$, 7.01 (br, s, 1H, NH2 $), 4.70(d d, 8.46 \mathrm{~Hz}, 4.51 \mathrm{~Hz}, \mathrm{CH}), 1.98-1.85$ (m, $\mathrm{CH}), 1.51-1.37\left(m, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.27-1.13\left(m, \mathrm{CH}_{2}\right), 0.91(d, 7.31 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right), 0.85\left(q, 7.31 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) δ (p.p.m., TMS): 171.5, 161.1, 156.3, 151.9, 140.5, 56.6, 36.7, 24.7, 15.5, 11.4. Analysis, found: C $43.9, \mathrm{H} 5.8, \mathrm{~N} 25.4 \% ; \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$: requires C $43.9, \mathrm{H} 5.7$, N 25.6%.

Crystal data

$2 \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=547.55$
Monoclinic, $C 2$
$a=21.4179$ (6) Å
$b=11.1466$ (2) \AA
$c=14.9649(3) \AA$
$\beta=133.4280(6)^{\circ}$
$V=2594.61(10) \AA^{3}$
$Z=4$
$D_{x}=1.400 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3819 reflections
$\theta=3.46-30.49^{\circ}$
$\mu=0.111 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Plate, red
$0.36 \times 0.30 \times 0.05 \mathrm{~mm}$

Data collection

KappaCCD diffractometer

φ scans, and ω scans with κ offsets
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski \&
Minor, 1997)
$T_{\text {min }}=0.961, T_{\text {max }}=0.995$
21713 measured reflections
3819 independent reflections

3119 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=29.9^{\circ}$
$h=-30 \rightarrow 28$
$k=-15 \rightarrow 15$
$l=-20 \rightarrow 20$
Intensity decay: negligible

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.098$
$S=1.04$
3819 reflections
354 parameters

> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0624 P)^{2}\right]$
> where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.34 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$).

N11-C12	$1.370(2)$	N21-C22	$1.369(3)$
C12-N13	$1.330(2)$	C22-N23	$1.332(3)$
N13-C14	$1.337(3)$	N23-C24	$1.337(3)$
C14-C15	$1.455(3)$	C24-C25	$1.435(3)$
C15-C16	$1.449(3)$	C25-C26	$1.437(3)$
C16-N11	$1.364(3)$	C26-N21	$1.364(3)$
C12-N12	$1.313(3)$	C22-N22	$1.311(3)$
C14-N14	$1.323(2)$	C24-N24	$1.333(3)$
C15-N15	$1.330(3)$	C25-N25	$1.344(3)$
N15-O15	$1.281(2)$	N25-O25	$1.279(2)$
C16-O16	$1.234(2)$	C26-O26	$1.246(2)$
C14-N14-C17-C18	$-123.6(2)$	C24-N24-C27-C28	$-81.1(2)$
C14-N14-C17-C19	$116.0(2)$	C24-N24-C27-C29	$154.46(19)$
N14-C17-C18-O12	$166.79(15)$	N24-C27-C28-O22	$167.91(17)$
N14-C17-C19-CC110	$57.9(2)$	N24-C27-C29-CC210	$64.8(2)$
C17-C19-C110-C111	$165.4(2)$	C27-C29-C210-C211	$161.0(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 16$	0.95	1.77	$2.709(2)$	170
$\mathrm{~N} 11-\mathrm{H} 11 \cdots \mathrm{O} 25^{\mathrm{i}}$	0.88	2.36	$3.147(3)$	149
$\mathrm{~N} 11-\mathrm{H} 11 \cdots \mathrm{~N} 25^{\mathrm{i}}$	0.88	2.19	$3.007(3)$	155
$\mathrm{O} 12-\mathrm{H} 12 \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.84	1.80	$2.619(2)$	166
$\mathrm{~N} 12-\mathrm{H} 12 A \cdots \mathrm{O} 26^{\text {iii }}$	0.88	2.04	$2.851(3)$	152
$\mathrm{~N} 12-\mathrm{H} 12 B \cdots \mathrm{O} 26^{\mathrm{i}}$	0.88	2.20	$2.911(3)$	138
$\mathrm{~N} 12-\mathrm{H} 12 B \cdots \mathrm{~N} 25^{\mathrm{i}}$	0.88	2.51	$3.279(4)$	146
$\mathrm{~N} 14-\mathrm{H} 14 \cdots \mathrm{O} 15$	0.88	2.00	$2.672(3)$	133
$\mathrm{~N} 21-\mathrm{H} 21 \cdots \mathrm{O} 15$	0.88	2.01	$2.886(3)$	172
$\mathrm{~N} 21-\mathrm{H} 21 \cdots \mathrm{~N} 15$	0.88	2.29	$3.071(2)$	148
$\mathrm{O} 22-\mathrm{H} 22 \cdots \mathrm{O} 26^{\text {iv }}$	0.84	1.97	$2.811(2)$	175
$\mathrm{~N} 22-\mathrm{H} 22 A \cdots \mathrm{O} 16^{\mathrm{v}}$	0.88	2.10	$2.965(3)$	165
$\mathrm{~N} 22-\mathrm{H} 22 B \cdots \mathrm{O} 16$	0.88	2.37	$3.041(3)$	133
$\mathrm{~N} 22-\mathrm{H} 22 B \cdots \mathrm{~N} 15$	0.88	2.15	$2.967(4)$	154
$\mathrm{~N} 24-\mathrm{H} 24 \cdots \mathrm{O} 25$	0.88	1.99	$2.647(3)$	130

Symmetry codes: (i) $\frac{1}{2}+x, \frac{1}{2}+y, 1+z$; (ii) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (iii) $\frac{1}{2}-x, \frac{1}{2}+y, 1-z$; (iv) $\frac{1}{2}-x, \frac{1}{2}+y,-z$; (v) $1-x, y, 1-z$.

Compound (II) crystallized in the monoclinic system. The systematic absences permitted $C 2, C m$ and $C 2 / m$ as possible space groups; of these, Cm and $C 2 / m$ were ruled out by the chiral nature of
the organic moieties, and $C 2$ was subsequently confirmed by the successful structure solution and refinement. All H atoms were located in difference maps and were treated as riding, with $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA\left(\mathrm{CH}_{3}\right), 0.99 \AA\left(\mathrm{CH}_{2}\right)$ or $1.00 \AA(\mathrm{CH})$, an $\mathrm{N}-\mathrm{H}$ distance of $0.88 \AA$, and an $\mathrm{O}-\mathrm{H}$ distance of $0.84 \AA$ or $0.95 \AA$. In the absence of significant anomalous scattering, the refined Flack parameter of -0.5 (8) (Flack, 1983) was inconclusive (Flack \& Bernardinelli, 2000); hence the Friedel equivalents were merged and the absolute configuration was set by reference to the known configuration $(2 S, 3 S)$ of L-isoleucine. Examination of the structure with PLATON (Spek, 2000) showed that there were no solvent-accessible voids in the crystal lattice.

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: $D E N Z O-S M N ;$ program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, using an EnrafNonius KappaCCD diffractometer. The authors thank the staff for all their help and advice.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG1043). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bauer, S. H. \& Andreassen, A. L. (1972). J. Phys. Chem. 76, 3099-3108.
Davis, M. I., Boggs, J. E., Coffey, D. \& Hanson, H. P. (1965). J. Phys. Chem. 69, 3727-3730.
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Flack, H. D. \& Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
Gregson, R. M., Glidewell, C., Ferguson, G. \& Lough, A. J. (2000). Acta Cryst. B56, 39-57.
Low, J. N., López, M. D., Arranz Mascarós, P., Cobo Domingo, J., Godino, M. L., López Garzón, R., Gutiérrez, M. D., Melguizo, M., Ferguson, G. \& Glidewell, C. (2000). Acta Cryst. B56, 882-892.
Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Schlemper, E. O., Murmann, R. K. \& Hussain, M. S. (1986). Acta Cryst. C42, 1739-1743.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (2000). PLATON. University of Utrecht, The Netherlands.
Talberg, H. J. (1977). Acta Chem. Scand. Ser. A, 31, 485-491.

[^0]: \dagger Postal address: Department of Electronic Engineering and Physics, University of Dundee, Nethergate, Dundee DD1 4HN, Scotland.
 \ddagger On leave from Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain.

